Acoustic Classification of Guitar Tunings with Deep Learning

Edward Hulme David Marshall Kirill Sidorov Andrew Jones 11th International Conference on Digital Libraries for Musicology

School of Computer Science & Informatics Cardiff University Research question:

• Can neural networks be used for the acoustic classification of guitar tunings?

Definition:

• *Guitar tuning classification* (GTC) is the identification of a particular guitar tuning from a recording that contains a guitar performance.

Motivation

• Provide methods that facilitate the transcription of a vast corpus of non-notated guitar recordings

In the maskanda music of South Africa the tuning used by guitarists often varies from standard tuning; the high string is tuned to D_4 instead of E_4 , and other tunings exist, "some pertaining to specific styles and others 'invented' by musicians to suit their individual characteristic styles" (Davies, 1994, p.122)

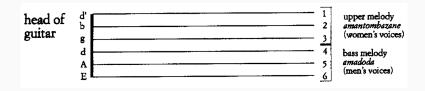
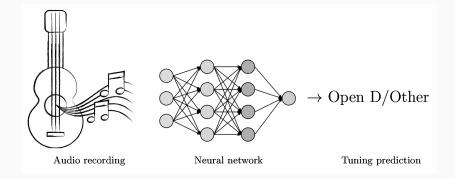



Figure 1: Common maskanda guitar tuning (Davies, 1994, p.121)

Challenges



Figure 2: Guitar notation (Bernstein & Libertino, 1996)

- Guitar tuning classification research is underdeveloped
- There is a wide body of research devoted to closely related tasks:
 - AMT (Benetos, Dixon, Duan, & Ewert, 2019)
 - Chord recognition (Barbancho, Klapuri, Tardon, & Barbancho, 2012)
 - String detection (Dittmar, Männchen, & Abeber, 2013)
 - Genre classification (Müller & Klapuri, 2014)

Guitar Characteristics

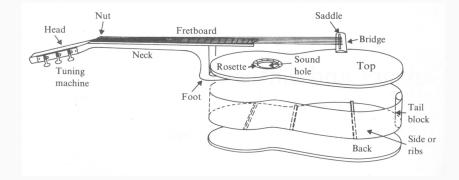


Figure 3: An exploded view of the guitar (Rossing, 1982)

Common guitar tunings (6th string to 1st string):

- Standard
- Drop D $D_2, A_2, D_3, G_3, B_3, E_4$
- Open D $D_2, A_2, D_3, F_{\#_3}, ...$
- Open G
- DADGAD
- E♭ Standard

 $D_2, A_2, D_3, F_{\#3}, A_3, D_4$ $D_2, G_2, D_3, G_3, B_3, D_4$

 $E_2, A_2, D_3, G_3, B_3, E_4$

- $D_2, A_2, D_3, G_3, A_3, D_4$
- $E\flat_2, A\flat_2, D\flat_3, G\flat_3, B\flat_3, E\flat_4$

Table 1: Open D chord in standard tuning and open D tuning.

Tuning	String Number (x = <i>no note</i>)						
	6th	5th	4th	3rd	2nd	1st	
Standard	Х	Х	D ₃	A ₃	D ₄	F#4	
Open D	D_2	A_2	D_3	F⋕₃	A ₃	D_4	

Harmonic Spectrum

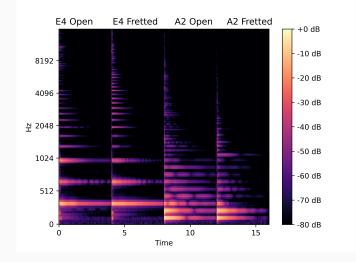
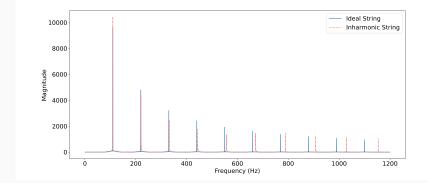



Figure 4: Log mel spectrogram representation of a guitar recording

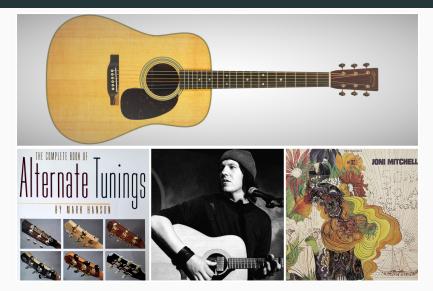


Figure 5: Spectrum plot of synthesised 'ideal' and inharmonic strings: $f_1 = 110 \text{ Hz}$ (i.e., A_2)

To create a guitar tuning classification system we:

- 1. Compile an annotated audio dataset
- 2. Convert the audio samples into a suitable input representation
- 3. Train the model on the corpus of labelled samples
- 4. Evaluate the predictive performance of the trained model

Authentic Data

Source Separation

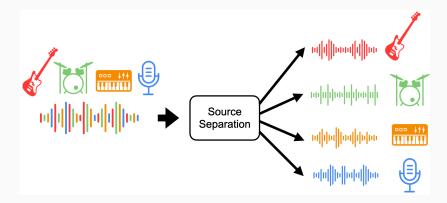


Figure 6: Music source separation (Manilow, Seetharaman, & Salamon, 2020)

Synthetic Data

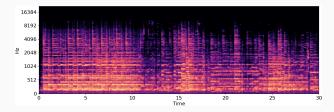
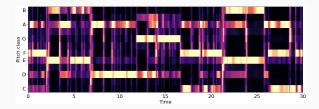


Figure 7: Software used to generate guitar audio

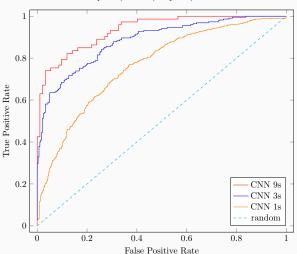

- Recordings assigned tuning/capo labels derived from:
 - The Joni Mitchell Complete—Guitar Songbook Edition
 - Official GuitarPro tablatures
- Tuning label examples:
 - Relative tuning: x75435
 - Absolute tuning: *EBEG#BE*
 - Capo position: C2

Input Representations

• Log mel spectrogram:

• Chromagram:

Two convolutional neural network (CNN) architectures were selected for the task:


- CNN 1:
 - · Adapted from a bird audio detection system
 - Used in 2-class experiments
 - Trained on Joni Mitchell recordings
 - Log mel spectrogram input
- CNN 2:
 - Adapted from a keyword spotting system
 - Used in 5-class experiments
 - Trained on synthetic guitar audio
 - Chromagram input

- CNN 1 trained on 29 Joni Mitchell recordings
- Spectrogram input representation
- Model predicts tuning class: open D/other
- Relative tuning predictions as audio contains capo/downtuning
- Model trained/tested with different clip lengths: 1s, 3s, 9s
- Evaluation on an unseen test set of 8 Mitchell songs

Table 2: AUC and ACC for Open D/Other Models

Model	AUC		ACC Clip		ACC Song	
	Mean	SD	Mean	SD	Mean	SD
9s	0.893	(0.03)	81.8%	(2.30)	97.5%	(5.00)
3s	0.823	(0.06)	74.2%	(5.37)	87.5%	(13.69)
1s	0.627	(0.12)	57.4%	(10.15)	52.5%	(14.58)

ROC Curve—Open D/Other: Sample Length Study

ROC plots (selected): OpenD/Other dataset

- CNN 1 trained on 19 Mitchell recordings
- Spectrogram input representation
- Model predicts tuning class: open D/open G
- Relative tuning predictions
- Evaluation on an unseen test set of 4 Mitchell recordings
- Evaluation on an independent test set of 8 recordings by different artists

Table 3: AUC and ACC scores for Open D/Open G Models

Test Data	AUC		ACC Clip		ACC Song	
	Mean	SD	Mean	SD	Mean	SD
Mitchell Multi-artist				. ,	95.0% 65.0%	

- CNN 2 trained using 10 hours of synthetic guitar audio
- Chromagram input representation
- 5 tuning classes
- Absolute tuning predictions as capo/downtuning not present
- Evaluation on 2 hours of unseen synthetic guitar audio
- Evaluation on an independent test set of 46 authentic recordings by different artists

Results-Multiclass Study

Table 4: Average F-score for 5 Tuning Class Models

Test Set	F ₁ C	lips	F ₁ Se	ongs		
	Mean	SD	Mean	SD		
Synthetic Authentic						

Table 5: Average accuracy for 5 Tuning Class Models

test set	ACC	Clips	ACC S	Songs		
	Mean	SD	Mean	SD		
Synthetic						
Authentic	43.4%	(0.07)	48.3%	(0.11)		

Results-Multiclass Model

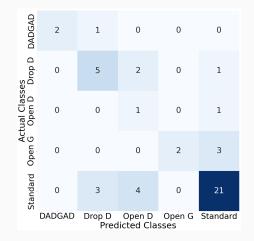


Figure 8: Predictions on an independent test set of real songs

In this work we:

- Provided evidence that deep learning can be used for the acoustic classification of guitar tunings
- Identified features of guitar audio that could be utilised by neural networks for GTC
- Created custom authentic and synthetic audio datasets for guitar tuning tasks
- Proposed dataset collection, generation and annotation methods

- Investigate capo and open string detection
- Release a large synthetic audio dataset for GTC
- Create a robust standard tuning detection algorithm
- Develop a model that outputs a separate tuning prediction for each guitar string

Thanks! Get more information about this research from:

github.com/edhulme/guitar-tuning-classification

References

Barbancho, A. M., Klapuri, A., Tardon, L. J., & Barbancho, I. (2012). Automatic transcription of guitar chords and fingering from audio. *IEEE Transactions on Audio, Speech, and Language Processing, 20*(3), 915-921. doi: 10.1109/TASL.2011.2174227
Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2019). Automatic music transcription: An overview. *IEEE Signal Processing Magazine, 36*(1), 20-30. doi: 10.1109/MSP.2018.2869928
Bernstein, J., & Libertino, D. (1996). *Joni mitchell complete guitar songbook edition.* Los Angeles, CA, USA: Alfred Publishing Co., Inc.

References ii

Davies, N. (1994). The guitar in zulu "maskanda" tradition. The World of Music, 36(2), 118-137. Retrieved 2024-01-23, from http://www.jstor.org/stable/43561390 Dittmar, C., Männchen, A., & Abeber, J. (2013). Real-time guitar string detection for music education software. In 2013 14th international workshop on image analysis for multimedia interactive services (wiamis) (p. 1-4). doi: 10.1109/WIAMIS.2013.6616120 Manilow, E., Seetharaman, P., & Salamon, J. (2020). Source separation. Retrieved from https://source-separation.github.io/ tutorial/data/introduction.html Müller, M., & Klapuri, T. A. (2014). Automatic transcription of bass guitar tracks applied for music genre classification and sound synthesis (Unpublished doctoral dissertation). Gustav-Kirchhoff-Straße 1, 98693 Ilmenau, Germany.

Rossing, T. D. (1982). *The science of sound*. Reading, Massachusetts: Addison-Wesley.